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Abstract

Precipitates, present in most commercial alloys, can have a strong influence on strength and hardening behavior of a
single crystal. The effect of thin precipitates on the anisotropy of initial slip resistance and hardening behavior of crys-
tals is modeled in this article. For the convenience of the computational derivation and implementation, the material
formulation is given in the unrotated intermediate configuration mapped by the plastic part of the deformation gradi-
ent. Material descriptions for the considered two phased aggregates consisting in lattice hardening as well as isotropic
hardening and kinematic hardening are suggested. The corresponding elastic—plastic rate-independent algorithmic
treatment is derived and numerical simulations of various loading cases are presented to discuss and assess the perfor-
mance of the suggested model and its rate-independent algorithmic treatment.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Precipitation strengthening is one of classical approaches to enhance the initial strength and hardening
behavior of metals. The influences of precipitates on the mechanical characteristics of crystals and in metal-
lic alloys have been investigated by various authors (e.g., Abel and Ham, 1966; Ashby, 1966, 1970; Brown
and Stobbs, 1971b; Hosford and Zeisloft, 1972; Humphreys, 1979; Bate et al., 1981; Barlat and Vasudevan,
1991; Kiser and Zok, 1996). From these investigations, it is known that the size, shape, spacing and orien-
tation of precipitates, which can be altered during aging processes, have strong influence on the plastic
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behavior. While precipitates can influence the initial yield strength and its anisotropy, they can also dom-
inate the hardening behavior, in particular, control kinematic hardening effects (Abel and Ham, 1966). Sev-
eral mechanical models related to these hardening effects have been suggested in the literature, e.g., by
Tanaka and Mori (1970), Brown (1973), Hosford and Zeisloft (1972), Bate et al. (1981), Schmitt et al.
(1997) and recently by Barlat and Liu (1998) for Al-Cu alloys containing 6’ (Al,Cu) precipitates with a vol-
ume fraction of 2-3%. This model (Barlat and Liu, 1998) is based on the elastic inclusion model (Bate et al.,
1981).

Therein (Barlat and Liu, 1998) the evolution of the size of the anisotropic yield surface is described with
the isotropic hardening while its macroscopic translation via kinematic hardening is formulated according
to the initial structure of the precipitates of the alloy. While the influence of size of second phase particles
on the flow stress is well known, the effect of the precipitates on the plastic anisotropy at the initial and
deformed state has not been thoroughly investigated. Zhu et al. (2000), e.g., have shown that the orienta-
tion of platelet precipitates can have significant influences on the anisotropy of the initial yield strength in
single crystals. With the influence precipitates have on single crystals, corresponding effects on the anisot-
ropy of widely applied polycrystalline materials with precipitates can be expected. In this context, it is desir-
able to establish an elaborate model which can represent the effect of precipitates on the plastic anisotropy
of initial yield strength as well as the isotropic hardening and kinematic hardening on single crystals.

To account for the anisotropic kinematic hardening induced by precipitates in single crystals, a crystal-
line elastic—plastic mechanical setting was suggested by Han et al. (2004a) and the corresponding elastic—
plastic, rate-independent algorithmic treatment was derived and numerical simulations were performed
by Han et al. (2004b). In this paper, the effect of thin precipitates on the anisotropy of the initial slip resis-
tance, the isotropic hardening and the kinematic hardening is modeled and numerical simulations are per-
formed. The material formulation is carried out in the unrotated intermediate configuration mapped by the
plastic part of the deformation gradient for the convenience of the computational derivation and implemen-
tation. Various numerical procedures for single and polycrystals can be found in the literature. Depending
on the considered material models, corresponding algorithmic treatments have been suggested, e.g., by
Pierce et al. (1983), Cuitino and Ortiz (1992), Kalidindi and Anand (1992), Beaudoin et al. (1994), Miehe
and Schroder (2001) and Clayton and McDowell (2003). By Nouailhas and Cailletaud (1995), the kinematic
hardening was included to describe the behavior of single-crystal supper-alloys.

For clarity of notations, the constitutive setting in the unrotated intermediate configuration is briefly
summarized in Section 2. Then, in Section 3, several descriptions for the evolution equations of the lattice
hardening including the isotropic hardening and kinematic hardening induced by precipitates are suggested
and discussed. The algorithmic treatment is derived relating stress, strain and internal variables increments
to the convective Oldroyd derivative, in Section 4. Finally in Section 5, the evolution of the flow stress of
single crystals is simulated in various crystalline orientations for different loading cases to discuss the aniso-
tropic hardening behavior of the suggested approach.

2. Notations and constitutive setting

_ Kinematic relations, stress/strain-expressions and governing relations in the intermediate configuration
B in the conventional crystal plasticity are summarized in the Table 1. Therein, the decomposition (1) of
deformation gradient F into elastic F, and plastic part F,, is applied, where it is assumed that the rotation
of the lattice is contained in F, (see Fig. 1). The plastic velocity gradient can be expressed with (4), where
denotes the plastic shearing rate, §* the slip direction and m” the slip plane normal of slip system o in B with
s’ = m”| =1 and §* - m”" = 0.

The stress power per initial unit volume is given by W =S -E = ¢ -d, where S is the second Piola—
Kirchhoff tensor in By and t the Kirchhoff stress tensor in B. The corresponding strain terms are defined
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Table 1
Kinematic relations, stress/strain expressions and governing relations in the intermediate configuration B in crystal plasticity

Multiplicative decomposition: F = F.F, (1)
Velocity gradient: 1 =1, + F.L,F," (2)
with I, =F.F,' and L,=FF,’ 3)
Plastic velocity gradient: EP = Z P @m’) =D, + Wp (4)
o~ (et o 1
D, =Y yEem), (), =50+0 (s)
—~ e s 1
W, =Y FEem), (),=300-0" (6)
~ 1 - -
Lagrangian strain tensor: E = 3 (FIF, - F;TF;I) =E.+E, (7)
= 1
E. =5 (F'F. 1) ®)
~ 1 .
E, =51 -FF,") 9)
Second Piola-Kirchhoff stress: S = F'¢F.T (10)
Mandel stress: P = (1+2E,)S = C.S (11)
(assumed isotropic)elastic relation : S = I',E, (12)
Resolved shear stress: ©* = P - (8% ® m”), (13)
Yield function: ¢* = |t* —x*| — g* (14)
Kuhn-Tucker-type conditions: sgn (t* —x*)j* > 0, @&* <0, 7*¢*=0 (15)

myp 4
By
F, > v,
v
m? A me
/ /‘s"ﬂ
/ . f! > | 5
7/ R. 5

Fig. 1. Intermediate configurations obtained by F = F.F, = V.R,F,.

with the time derivative of the Lagrangian strain tensor £ and the symmetric part of the rate of deformation

~ ~ A
tensor d = (/),, respectively. An expression of W in components of B, yields W =S - E  with the Oldroyd

(1950) derivative for strain like variables ( )* describing objective and covariant strain velocities in B.
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The Clausius—Duhem inequality for isothermal processes can be stated as W — iy > 0 with the stress
power W and the specific free energy  per unit reference volume. A reduced form of this inequality can
be obtained introducing the Mandel stress tensor P (= (I + 2E,)S). For this an additive split is assumed

VW =1y, +,, where y, is considered to be dependent on F,. Its time derivative is given with {pe =% E,

oK,
oy

yielding (see, e.g., Han et al., 2003), where S = e, the reduced form P - l~)p — l.ﬁp > 0. Thereby, use was

~ OE
made by the identity D = Ej, which can be obtained applying the Oldroyd derivative for strain like terms

O =)+ i;() + (.)L,. For small elastic strains v, can be written as /, = %ITZL, -T,E, with the (assumed
isotropic) elastic moduli contained in I',. To distinguish forward and reversed straining, the yield criterion
of each slip system « shall be described here by &* = |t* — x*| — g* < 0 with a back stress term x* and the
slip resistance g* describing isotropic hardening in each slip system.

With stress-like internal variables defined by x* and g°, the plastic part of the free energy is reformu-
lated as yy, = =) x*a* + g”z*, where a” and z* are the thermo-dynamically conjugated strain-like internal
variables of x* and g% respectively. With the yielding conditions describing a convex elastic set in
stress space, the rate of shearing 7* can be determined by the Kuhn-Tucker-type loading condi-
tions sign(t* —x*)j* = 0, ®* <0, "®* =0. Such descriptions would correlate to the algorithmic
treatments developed by Miehe and Schréoder (2001). Descriptions for the slip resistance g* and the
resolved back stress x* would complete the material formulation, which are discussed in the following
sections.

3. Evolution equations for the hardening

Precipitate induced hardening is characteristic of strong Bauschinger effects, high initial strength, rapid
and strong hardening. In the elastic inclusion model (Bate et al., 1981), precipitates induce only kinematic
hardening, since only elastic strains are assumed within the precipitates. Thus the hardening induced by the
precipitates is considered to be kinematic and reversible. The anisotropy of the initial yield strength is not
reflected in this elastic inclusion model. In the plastic inclusion model (Hosford and Zeisloft, 1972), precip-
itates experience the same strain as the matrix and back stresses are not considered so that the anisotropy in
forward and reverse loading is not reflected. The anisotropy of the initial yield is, however, quite well re-
flected in this model (see, Zhu et al., 2000).

From the experimental literature (e.g., Engler et al., 2001 and the references cited therein) it is known
that the deformation process of precipitated crystals is more complex. The area of the matrix remote from
the particle deforms similar to single phased crystals with dislocation cells at low deformation degrees trans-
forming to microbands at higher degrees of deformation. In the vicinity of the particles, strong lattice rota-
tions were observed resulting particularly at the interfaces of matrix and precipitate in very high dislocation
densities. The precipitates themselves are subjected to rotation, bending, and even fracture (see, Bate et al.,
1981; Engler et al., 2001).

For an improved description of the mechanical characteristics of the precipitates induced hardening, a
more elaborated model is suggested in this work taking account of three regions in the material (see Fig. 2):
(a) the matrix area where the influence of the precipitates is negligible, (b) the precipitate area characterized
by a hard material and (c) the influence area Q2 characterizing the transition at strain field between the pre-
cipitate and the matrix, where lattice rotations or shading effects (Humphreys and Ardakani, 1994) and
high dislocation density evolve in the deformation process. Also, the following simplifications are further
assumed: (i) the material contains many inclusions (i.e., precipitates) homogeneously distributed, (ii) the
inclusions do not interact with each other to any appreciable extent and (iii) the matrix and the precipitate
approximately have the same elastic constants.
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(a) matrix/lattice

(c) influence area 2

(b) precipitate n

Fig. 2. Influence area @ around a precipitate 7.

In view of Fig. 2, the resolved shear stress is divided into three parts: the average resolved shear stress of
the lattice 73, the average stress in the influence region 15, weighted with the relevant area fraction w and the
average of the stress within the inclusion 77 weighted with the relevant volume fraction f, yielding

=1 -f—-ow)],+oh+ 11 (16)

For incorporation of such a model with the internal variable approach, the different stress components
weighted with their area and volume fractions are

{-“Q = a)(r?z — ’L'X/[) and %; :f(f? - T?tt/[), (17)
yielding
=1 + 15+ 17 (18)

The influence area w may be dependent on the size of the precipitate. For simplicity, however, it is assumed
that o is proportional to f, which yields both hardening components %, and %; to be proportional to f in
(17).

As correspondence to the internal variables applied in (14), it is suggested to correlate the slip resistance
to the hardening mechanisms of the matrix g* = 1, + 1, and, following Bate et al. (1981), the back stress to
the stress in the precipitate, as x* = ;. In average, the elastic range and thus also the back stresses are as-
sumed to be small in Q and negligible in the matrix area. In the following the kinematic hardening related to
Q is, as for other regions of the lattice, neglected.

3.1. Hardening of the lattice

The rate of the strain-like internal variable associated with g* is independent of sign (7*) and thus iden-
tified with the magnitude of the shear rate |j”|. The evolution of the slip resistance 7}, is usually described by
the hardening law

= Y| (19)
p

with initial value 7}, and the work hardening moduli of the lattice hj'(f A widely applied description for the
work hardening moduli given as

h:f = [‘IM + (1 - QM)éaﬂ]hfw (20)

where ¢,, ranges from 1.0 to 1.4 and represents the ratio of the latent hardening to the self-hardening and
the single slip hardening rate /”,.

A more complex description was for instance suggested by Zhou et al. (1993) where, in addition to dif-
ferent slip systems, the relation to different slip planes was treated in specific ways. In the literature, various
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forms have been also suggested for the description of hfl, by Anand and Kothari (1996) and Zhou et al.
(1993), the self-hardening of a pure single crystal is suggested in the power-law relation as

by
W, = r;;<bcwo + 1) , where y =) " ( > / |dj}“|dt>. (21)
MTM o o

3.2. Hardening induced by precipitates

For small to moderate strains, the precipitate is usually assumed not to be subjected to plastic strain. The
averaged stress of the precipitate 77 is, therefore, assumed to be reversible and reflects here the back stress
term. With significant higher yield stresses in the precipitates than in the lattice, high dislocation densities
can be expected in the close neighborhood of the precipitates and lattice rotation/shading around precipi-
tates will result in additional hardening of the material. With the precipitate structure and morphology being
inhomogeneous, the dislocation density distribution and lattice rotations around the precipitates can also be
expected to be anisotropic and, thus, also yields anisotropic hardening. Precipitates are known to induce also
higher initial values in the critical resolved shear stresses which can be explained by bowing of dislocations.
The critical resolved shear stresses are again dependent on the precipitate structure/morphology.

Thin precipitates, considered here, like the 0’ precipitates, are normally aligned parallel to the habit
planes (see Fig. 3) after the aging process. The volume fraction of each habit plane can vary depending
on the aging process. In the deformation process of the aggregate, the inhomogeneous deformation is in
part accommodated (see, e.g., Hosford and Zeisloft, 1972; Bate et al., 1981; Engler et al., 2001; Han
et al., 2004a) by rotations of the precipitates relative to the lattice, as indicated in Fig. 4.

3.3. Isotropic hardening induced by precipitates

In shear deformation inducing precipitate rotation, Hosford and Zeisloft (1972) assumed the hardening
effect of the precipitates to be negligible. Therefore, the shear strains have been excluded in the incremental

(001)

)\ i
(100)

Fig. 3. Precipitates in habit planes.

= —— itan /,/ g

Fig. 4. Rotation of precipitates by F,.
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plastic work dw, = 7dg,, where T denotes the equivalent stress and dg, the equivalent plastic strain. Con-

sidering only the area Q and single slip deformation, the neglect of these shear strains can be expressed with
the increments in its related plastic potential as

. 1 0y ~n ~
¥y =2 30 S E o), E e (22)

where /™ is the volume fraction of the precipitates parallel to the habit plane =, s7, is a weight function to

describe initial hardening and saturation behavior, while the fourth order tensor H" is defined as

3
H =) H, &0 (23)

ijkl
with the base vectors of the precipitates €. The components of H" can be given with H7, =1 for
i=j=k=1 (ijk1)=(23,23), (i,jk,])=(3,2,3,2) and otherwise Hj,, =0 for a platelet prec1p1tate
aligned to [100] plane and €] parallel to (100), (010), and (001) respectlvely The expressions for H
aligned to other habit planes are then obtained by rotation of €, i = 1,2, 3. The reorientation of precipitates

is described by €] = for precipitate orientation vectors in the tangential plane of the disc, therefore, by

\F e" ol
- F,Te
e = ‘F’, = ”"I for the unit normal vector.
n[)
With hg, = a 2 the increments of the corresponding resolved shear terms can be given approximately as

6 @ m) - B @ m) (24)

7

2o 1 o
=t

for slip system o by neglecting dependencies of H" on 7*. For the functions h’g, the self-hardening descrip-
tions suggested by Chang and Asaro (1981) can be used, i.e.,

e = K2 sech’ (T gy ) (25)

_-EQ

with material parameters /5, 75, and t%. The description in (24) for a single slip does not reflect latent hard-
ening. The generalization of this description to the multiple slip deformation incorporating the latent hard-
ening is suggested as

to=> hdli, (26)
B
where
af af1B : o« 1 7y, ~o ~ 1”0 ~ o
Y =g+ (1 — qo)01hE,  with hQ—fo hEA/ (3 @m*)g - H (5" @m%),. (27)

Initial values are given as

The = f Zf"sgn\/ (" @m’);- ﬁn(gu ® ﬁz)s» (28)

where s7,) is a material parameter which influences the initial anisotropy in the yield stress.
3.4. Kinematic hardening induced by precipitates

If the back stress is related to averaged stresses in the precipitates and the deformation of the precipitate
is assumed to be elastic, then z; = I'.§;. Now to project the internal strain from the overall strain of the
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aggregate, Bate et al. (1981) and Brown and Stobbs (1971a,b) proposed the elastic inclusion model, as sug-
gested by Han et al. (2004a) in a crystalline setting, in which & = Kg,, is derived modifying the Eshelby
formalism for elasticity to elasto-plasticity with the accommodation tensor K =1 — (A). While the Eshelby
formalism is exact for elasticity, for elasto-plasticity such an approach can only be seen as an approxima-
tion. In general, other operators than K projecting the internal strains from the overall strain of the aggre-
gate could also be applied. Assuming again that the hardening of shear deformation inducing precipitate
rotation is negligible another possibility is to use H' asa projection operator for simplicity. This would
yield

Table 2
Hardening descriptions for a single crystal with thin precipitates

Slip resistance

& = St + i)
B

With work hardening moduli of the lattice

h;f =[gy + (1 - Q.M)éxﬁ]hf\;

M)y b
<erf{4+ )

And the moduli related to the hardening induced by precipitates

g = gy + (1 = q,) 5 1

o 1 7 7, ~o ~0 e ~u
By S E ) T o m),

" h(),\
hy :hgsechz( < o7 )

K o
To — To
~T 3
_ n T ~m ~T ~
H = E HYe Qe e e
ikl

Kinematic hardening induced by precipitates

Py =CX Fom)

With
. . 5l e
X' = e THY @ @nl) —bfjiX and H=73/H
B

n
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1 x
= 2 (29)

where

71X (30)

o ~ on ~ 0 . ~nv ~ ~T TR~ ~
¥ =CX - Fem); withX =cfTH » #F@om’)-b,
B

Here, y =5 7" and C, _1—|—21~Ee:F:Fe as a right Cauchy-Green tensor, while b, and~ ¢, are
material constants and () is the Oldroyd derivative for stress like terms given with () =(.)-
Lp( ) —( )L which is identical to the Lie derivative (see, e.g., Cuitino and Ortiz, 1992; Han et al.,
2003). Note that in rate description of the back stress in (30) incorporates saturation behavior observed
in experiments usually related to relaxation mechanisms like dislocation annihilation and cross slip. By
combining all back stress tensors X" of each precipitate © for a single back stress tensor X, this formulation
can be simplified to

P =x'=CX- (§om),, (31)
where
% o - - .
X' =c/T'RY #F om)y - b5|X  with H = S/ H (32)
B T

and X is assumed to vanish initially.

Although it is well known, it should be noted that the fine-to-small particles give the highest strength-
ening and hardening effects. For example, a small volume fraction of fine precipitates can increase the yield
strength of pure aluminum by 20 times, while the increase of the yield strength with large precipitates is
generally less effective. Besides, the particle size effect becomes much more drastic as the particle diameter
decreases. This size effect is not reflected by the suggested model and material parameters have to be ad-
justed. Such size effects could be modeled by size dependent strain gradient material descriptions (see,
e.g., Shu, 1998; Meissonnier et al., 2001; Kim and Oh, 2003; Evers et al., 2002, 2004; Ohashi, 2004; Han
et al., 2005a,b) and an explicit discretization of the precipitate structure. This however would be computa-
tionally quite costly and not applicable for large scale aggregates or poly-crystals. All hardening descrip-
tions of the suggested material model are summarized in Table 2. The algorithmic treatment for the
evolution equations of the hardening descriptions follows in the next section.

4. Numerical algorithm

As a starting point, all variables at the time step 7, are assumed to be known and the current time shall be
given with 7, . In what follows, however, all variables without subscript are evaluated at time #,,;. With S
dependent on the elastic strain or stretch tensors; i.e., C,, these tensors have to be updated from ¢, to 7,+;.
The plastic deformation gradlent can be written as F, = exp(AtL )F which is approximated here by
F,~(1+ ArL p)E, = (1+3,A78" @ m”*)F, where 1 is the identity tensor. Assummg no plastic deforma-
tion, the trial value for the elastic deformatlon gradient is obtained as F' = F(F”) , yielding the elastic
right Cauchy—Green tensor C, = FTF After Ay* are iteratively obtamed as dlscussed later, the updated
strain can be written as (see, e.g., Kahdmdl and Anand, 1992; Cuitino and Ortiz, 1992)

trial

C _ Etrlal _5 <éjial Z quga ® ﬁ]ot) + O(A)}ﬂ% where 66 _ FzrizllTFZrizll' (33)
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~ ~ trial

~trial . . .
With the trial stresses S = I'.1(C, —1)and neglecting quadratic and higher terms in Ay” the updated
stress is obtained as

~ ~trial ~ ~ trial ~ 0
S=¢ re<ce ZAy“§“®m> . (34)
The Kirchhoff stress can then be computed via t = FLSF:, where F, = F(FZ“)fl.

_For the numerical treatment of the back stress, the evolution equations in stress-like internal variables

X' = e f f‘eﬁza?”‘(éz @m")g — be)N( are considered. Applying the Oldroyd derivative, an incremental
form for the back stresses evolution can be given with X =X- ipi - XZZ, X = fpf(nfg +AX" where
f, is the plastic incremental deformation gradient; i.e., f, = FpF:fl =1+ Atip and the increments in the

back stresses are written as AX = cxff‘eltlzaAy“(?‘ @m’)g — b|Ay|X with Ay = > wealAy*], yielding

S 1

X = T 508 (pr f,+c/T.H Z Ay (E ® ﬁl‘)s> . (35)

With (13) and (31), the trial resolved shear stress and back stress terms on each slip system « are given by
il ~ trial ~trial Srial ~ trial ~ trial

=C, S -(®m") and x*" =C, X - (8"®@m"), respectively. If the elastic strains are as-

e
sumed to be infinitesimal, as commonly assumed for metallic materials, C, can be neglected in the deter-

. . . . trial < trial ~0 ~ 0 trial n SN ~0 ~ 0 .
mination of the resolved terms, yielding ™ = S' -(8"®@m”), and x” = =X (om ),» which
is applied here. For the time step n + 1 satisfying
—-g" <0, Yaes, (36)
the time step n+ 1 is elastic. If (36) is violated for a slip system o € S, the step is elasto-plastic. Here,
S={1,...,m} denotes the set of possibl}e slip systems of the single crystal.

If the flow criterion is violated by & > 0 for some o € S, the plastic consistency conditions have to be
satisfied by variation of Ay*. The main problem now is that the set of active slip systems

A = {o € S|sign (t* —x*)Ay* = 0 and ¢* > 0} (37)

o trial | lrial trial

1) =17

at the end of the time interval is not known a priori and not uniquely determined by the trial state.

Therefore, an iterative active set search procedure is performed, which is discussed in more detail in Han
et al. (2004b) and has been summarized in Appendix A. In the following, it is assumed that the active set of
slip systems A is given. Then, for all & € 4 the actual incremental parameters Ay* are determined from the
associated consistency conditions.

4.1. Determination of plastic slip at a given active slip system set

Based on the representation of the stresses (34) and the back stresses (35), the consistency conditions can
be recast in the form

0

= @" =sign (" —x") (" —x*) —g" =0, a€Ad. (38)

The solution of this condition for the plastic parameters Ay* is performed by a local Newton iteration based
on the linearization of (38)

P =3 DT AN =0, Vaed (39)
ped
with the iteration index , the Jacobian matrix D = — a4 and Ay = Ay AN
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With r* = sign (Ay*)(t* — x¥) — g%, the components of the Jacobian matrix are obtained as
or* . ot* ox” og”
D“ﬂ = - = — A“ * — 40
oap ~ sien(d )<aAy/f aA«/ﬁ) oA (40)
The iteration is repeated until a convergence criterion is fulfilled, i.e., [r| = />, (r*)* < tol. With Ay*
determined by the Newton iteration, all needed Variables can be updated for a given active set 4. Now,
the determination of the components 2=, -2 and 2% needed for the evaluation of (40) follows.

3A 34 aA A7
The dependence for the resolved shear stress  with respect to Ay*, a€ A can be given as

trial

~a rial . . . .
=1 —(§Feom’) T (Ct >, A8 @ m ) yielding the derivation

aif =~ em), TC1Y o m), (41)

With g* = g + Ag” and evolution equation g* = Zﬁ(hif + KMk, Agr = Zﬁ(h}“\f + B9 AP is ob-
tained, which yields the derivation as

% =3 [qu + (1 — g,)5) | sign (A7) k], + |Ay°| ahé

oo . 5 570 3 dh"
#3 {la + (1 )7 san (a)0705 + 1] 35| | W)
where
ahb M) by—1
M

Ohy, ah“ o T s
OAYP fo aAﬁ\/ @m’)-H (§"®@m"),, (44)

s o B 0, o
O WL sign (A7) sech’ M) ann TV (45)
aAyﬂ ™H — 1% 5, — 15 T, — 1%

The dependence of H on A 7”* through rotation of €] is assumed negligible in this derivation. However, H
is updated at the end of each Newton iteration, with respect to precipitate rotations.

Applying approximations f, =1+ _,Ay*§* @ m” and W — by|Ay|, while neglecting higher
order terms in the resolved shear strains Ay*, the back stress given in (35) can be reformulated as

= (1=bA))X" +2(X" T, 078" @ "), + ef THY,AP(8" @ M) + O(Ay).

The linearization yields aaAXﬁ ~2(X's @ m’), — b,sign(AY)X" + ¢,fT HE® @ m”), and considering
ox*

arrE® m”) - aA X we obtain

ox*
OAyF

It should be noted that in case of multiple slip deformation, the active slip system sets determined by the
algorithmic treatment outlined in Appendix A may not be unique and different sets can be obtained
depending on the initial/trial active set at the beginning of the time step. A schematic summary of the stress
integration procedure is given in Table A of Appendix A. Also, under particular hardening situations, some
of the slip systems in the determined sets may be redundant and the Jacobian matrix [D*#] can be

~ (5 om’), - 2(X'§" @m’), — bsign(AY)X" + e fT.HE @ m’)). (46)
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ill-conditioned or singular. Numerical treatments for such cases have been suggested by Miehe and Schro-
der (2001) and applied to back stress formulations in Han et al. (2004b) which has been summarized in
Appendix B for convenience of the reader.

5. Numerical examples

Most of experimental investigations on the hardening of crystals are limited to simple tension tests (e.g.,
Chang and Asaro, 1981). Although several references can also be found on experimentally determined
Bauschinger effects and transient deformation such as Khan and Cheng (1998) on copper crystals and Ed-
wards and Washborn (1954) on zinc crystals, experimental data on back stresses and Bauschinger effects in
precipitated crystals seem unavailable. The quantitative comparison of the proposed material model and
simulation procedure with experimental data is, therefore, rather difficult so that the main aim of the fol-
lowing examples is to qualitatively illustrate the behavior of the suggested model. Particular interest is ad-
dressed to the effect of the particle description H on the anisotropic hardening behavior at moderate to
large strains. The numerical algorithm described in the previous sections has been implemented into the
ABAQUS explicit (2002) material user interface and all simulations have been performed explicitly. The
step sizes have been chosen in such a way that the kinetic energy is negligible compared to the strain energy.
For completeness and later use, the applied order of the twelve slip systems of a FCC crystal has been given
in Table 3. For simplicity, the initial critical resolved shear stressed tj,, are assumed to be the same for all
slip systems and the material parameters s7, are assumed to be the same for all precipitates. The material
parameters applied in the following examples are given in Table 4 if not otherwise noted in the text.

5.1. Initial yield

To illustrate the plastic anisotropy in the initial yield of the suggested model, tensile deformation of
Al-xCu crystals with different microstructures are considered. The microstructure is usually controlled
by aging processes. The resulting microstructures were correlated with the yield stress and analyzed with
respect to continuum mechanics models and computer simulations in Zhu et al. (2000). The yield stresses

Table 3

Slip directions s* and planes m* of the slip systems o in Miller indices notation

o s” m” o s” m” o s* m” o s” m”

1 11] (1171) 4 [011] (1171 7 [011] (1171) 10 [011] (117)
2 1] (111) 5 [101] (111 8 [101] (111) 11 [101) (111)
3 10] (117) 6 [110] (111) 9 [011] (117) 12 [011] (117)
Table 4

Material parameters of the Al-Cu single crystal

Young’s modulus £ = 70,000 MPa qgo=14

Poisson’s ratio v =10.3 h¢$, =135 MPa
qu=14 15 = 60 MPa

79, = 0.98 MPa 5, = 100 MPa
by=04 b, =30.0

¢y =784 MPa c=20

%, = 10 MPa 5%, = 50 MPa
f=0.03"

& This value is used for all the simulations unless otherwise noted as for Tables 5-7.
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of the stress-aged specimens were found to be lower than those of the stress-free-aged specimens, either
when the test direction was along or perpendicular to the aging-stress direction. This was attributed to
the effect of stress-induced preferential orientation of the 6’{100}-plates as well as to their different volume
fraction and/or morphology in the stress-aged specimen subjected to the same thermal treatment as the
stress-free-aged specimen. It should be noted that for stress-aged specimens, precipitates preferentially form
perpendicular to the compressive aging-stress direction.

Table 5
Quantitative TEM analysis data of 6’-platelet precipitates in the Al-Cu specimens subjected to compression tests (from Zhu et al.,
2000)

Specimen number® Test angle 0° Volume fraction® Alignment ratio (||:L)¢
1f 0° 0.0229 50:50
Is 0° 0.0215 100:0
2f 0° 0.0227 50:50
2s 0° 0.0197 98:2
3f 0° 0.0216 50:50
3s 0° 0.0199 99:1
4f 0° 0.0195 50:50
4s 0° 0.0199 98:2
5f 0° 0.0177 50:50
5s 0° 0.0171 98:2
of 90° 0.0165 49:51
9s 90° 0.0156 99:1

? f and s denote stress-free and stress-aged, respectively.

° Angle between directions of mechanical tests and stress application during stress aging (with 0°, the mechanical test direction is
[100] and with 90°, the mechanical test direction is [010]).

¢ Volume fraction of the 6’-plates measured by quantitative TEM.

9 The number ratio of the plates whose normal directions are parallel to the applied aging-stress direction to those perpendicular.

Table 6
Comparison between experimental and simulation results for the modified axial component of the initial yield stress, 7,4, in the stress-
free-aged and stress-aged Al-Cu specimens

Specimen number® Experimental tests Simulation results
%, (MPa)® 3 (Y%)° Taxial (MPa) d (%) Hosford et al. 6%(%)® Bate et al. 6% (%)°

If 30 —15.3 71.5 -7.9 —6.1 -33.6
Is 67.8 71.3

2f 78 —13.1 77.3 -7.7 —17.1 —26.5
2s 67.8 71.4

3f 79.2 —12.4 77.3 -7.7 -7.9 -31.9
3s 69.4 71.4

4f 68.6 -12.0 77.2 -7.5 2.1 —41.8
4s 60.4 71.4

5f 67.8 -22.3 77.1 -7.4 -34 -36.4
5s 52.7 71.4

of 63.7 -39 76.7 -3.6 1.2 21.9
9s 61.2 73.9

#f and s denote stress-free and stress-aged, respectively.
bede Data from Zhu et al. (2000).
® Strengthening stress Taxial = (6 — 00) X 7 is the contribution to the initial yield stress due to Cu solid solution hardening, where 7 is
the Schmid factor for the single crystal, and ¢ is the measured initial yield stress. The value of gy is set to 55 MPa and # to 1/2.45.
€6 is the difference between the stresses Taxia Of stress-free-aged and stress-aged specimens, i.e. 6 = —100 X (Taxial.f — Taxial,s)/ Taxial f-
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The quantitative TEM analysis of the ¢’-plates in the Al-Cu specimens and the simple compression tests
given in Zhu et al. (2000) are summarized in Table 5, where the compressive aging-stress direction is aligned
with the [100] direction in the single crystal. The compressive mechanical test direction is aligned with the
[100] direction in the single crystal for the 0° test angle and [010] for the 90° test angle, respectively. To
illustrate the performance of the proposed approach, numerical calculations have been preformed and
results in the initial yield stress (calculated/modified axial components of the initial yield stress, T 4. Which
represents the contribution of precipitates to the initial yield stress) were compared with experimental
results obtained by Zhu et al. (2000) and predictions listed therein obtained by the models suggested in
Hosford and Zeisloft (1972) and Bate et al. (1981). For these simulations, each volume fraction of precip-
itates whose normal directions are parallel to the applied [100] aging-stress direction is calculated by con-
sidering both the overall volume fraction of precipitates and the ratio of the plates whose normal directions
are parallel to the applied aging-stress direction to those perpendicular to it. In Table 6 the calculated axial
components of the initial yield stress 7,4, are compared with experimental results and predictions of the
models by Hosford and Zeisloft (1972) and Bate et al. (1981). In this comparison, the experimental axial
component of the initial yield stress is obtained by 7.4, = (0 — g9) X 1, where o is the measured axial initial
yield stress with precipitates, oy is the contribution of Cu solid solution hardening to the initial yield stress
and 5 is the Schmid factor. As in Zhu et al. (2000) the relative difference é between the strengthening stress
Taxialf Of the stress-free-aged specimen and 7,,1 s Of the stress-aged specimen has been applied as compar-
ison in Table 6 and the predictions of the suggested model 7,4, are qualitatively in accordance with the
experiments 7y, in as far as the stresses of the stress-aged specimens are lower than those of the stress-free
aged specimens, whether or not the test direction was along or perpendicular to the aging-stress direction.
In addition our proposed model yields closer results to those obtained experimentally than the models of
Hosford and Zeisloft (1972) and Bate et al. (1981).

5.2. Monotonous loading
The performance of the suggested model in the hardening behavior for monotonous loading will be

discussed next by considering tensile compression tests. As in Cuitino and Ortiz (1992) and Anand
and Kothari (1996), simulations are performed using a single eight-node continuum element under

300 T T T T

Orientaion: [100)[010][001]
250 - x-axis loading direction

200 -

150

Tyq (Mpa)

100

— =

S0 ————— ————= Rewmodel
— Conventional model

0 L " 1 L
0.00 0.02 0.04 0.06 0.08 0.10

€11

Fig. 5. 11, versus ¢, in [100] orientation without (conventional model) and with precipitates (new model).



2412 C.-S. Han et al. | International Journal of Solids and Structures 43 (2006) 2398-2421

homogeneous deformation. Simple stretch directions are aligned to the element edges and all faces remain
parallel to the initial configuration. A volume fraction of f'=0.03 and a equally distribution of the precip-

Table 7
Material parameters for the conventional model®
g(‘; q ho Ts To
41 MPa 1.4 600 MPa 104 MPa 60 MPa
# Model of Chang and Asaro (1981): slip resistance ¢* = Zﬂhgﬂ 159, hgﬁ =[g+(1- q)&“"}hg and hg = hysech’ (%)
400 T T T 400 T T T
300 - . 300 [ -

- o
=} L e Q
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Fig. 6. 133 versus |e33| in various orientations without (left) and with (right) precipitates.
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Fig. 7. Cylinder compression in [122] direction, averaged 33 versus |es3| for 1, 12 and 1456 finite elements without (left) and with
(right) precipitates.
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itates along the habit planes [100], [010]and [001]is assumed. For comparison additional simulations with
a conventional hardening model, e.g., Chang and Asaro (1981), have been performed where the precipitate
substructure is not taken into account. Material parameters of this conventional model are fitted in such a
way that the stress—strain behavior in [100][010][00 1] orientation of both models have a similar behavior
(see Fig. 5). The determining material parameters of the conventional model, as explained above, are listed
in Table 7. In Fig. 6 the compressive stresses over the compressive strain in various crystalline orientations
are illustrated where the anisotropy of the hardening behavior is reduced in the predictions of the suggested
material model considering the precipitate substructure. In this respect it should be noted that in compar-
ison to pure Al-crystals, a reduced anisotropic hardening behavior was reported in experiments for alloys
containing 0" precipitates (Hosford and Zeisloft, 1972).

In the above considerations homogeneous deformation was assumed which may not be present in exper-
imental tests. Even for simple compression tests, local lattice rotations from boundary constraints arise
yielding inhomogeneous deformation. As a result, a homogeneous single crystal can transform into a mul-
ti-crystal at higher strains. Therefore, simulations of experimental tests have to be performed with more
than one element to capture the real deformation process.

+8.66%9e-03
+6.263e-03

+1.342e-02

+1.892a-02
+1.070e-02

d488t Gohaeht
Hiere-0r +1.697¢-0
R 1 380a-01
! +1. -
305008 Als1e01
ot R
a a8 - =
+4,784e- +6.848e-02
Wit +5160e-02
ghees gt
- & +1l. &=
+9,766e-04 +5.766e-04

+3.159¢-02
+1.9830-03

(2)

Fig. 8. Lattice rotation (in radians) from the compressive axis at different ¢33 for orientation [122] [210] [245]: (a) e33 = —0.05, (b)
€33 = —0.1, (C) €33 = —0.15, (d) £33 = —0.2, (e) £33 = —0.25, (f) €33 = —0.3, (g) €33 = —0.35.
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As an example, a circular cylinder with radius 5 mm and height 5 mm is considered. The bottom plane is
fixed in vertical z-direction and the top plane is moved down for the simple compression test case. Fig. 7
shows averaged compressive stresses over averaged compressive strain with 1, 12 and 1456 elements in
direction [122] with differences in the order of 25%. Finer discretizations than the 1456 elements yielded
practically identical results and, therefore, the results in the stress can be considered to be converged with
respect to mesh refinements. A remarkable stress decrease has been computed at ¢33 = —0.15 in the case of
1456 elements. Such decreases have been observed and discussed by Asaro (1978), Rashid and Nemat-
Nasser (1992) and Miehe (1996) and these stress-decreasing phenomena are caused by local lattice rotations
into softer orientations.

To illustrate the inhomogeneous deformation, in Figs. 8§ and 9 the contours of the lattice rotation (in
radians) to the compressive axis and {111} pole figures according to the corresponding compressive

x =[122] x, =[122] % =[22]
%, =[210] x,=[210] %, =[210]

@ (b) ©

= =12 x =[122] x, =[122]
x,=[210] x,=[210] x,=[210]

(d) (e) 63)

x =[122]
x, =[210]
(®

210] [245] orientation at different strains. [*8 slip normal directions are
). (111)

(111) and (111)}: (a) e33 = —0.05, (b) £33 = —0.1, (c) £33 = —0.15, (d)

Fig. 9. {111} pole figures* compressed cylinder in [122]
plotted here, i.e., (111), (111), (111), (111), (111),

2] |
111
€33 = 702, (C) €33 = 7025, (f) €33 = 703, (g) €33 = —0.35.
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logarithmic strain es3 for the [122] [210] [24 5] crystalline orientation are given, respectively. Local lattice
rotations yield inhomogeneous deformation, since the material at the top and bottom can not rotate as in
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Fig. 10. Accumulated shear strain y versus &s3: (a) 33 = —0.05, (b) &33 = —0.1, (c) &33 = —0.15, (d) &33 = —0.2, (e) &33 = —0.25, (f)

e33 = —0.3, (g) &33 = —0.35.
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the interior. The inhomogeneity is also illustrated in Fig. 10 where the equivalent plastic strain is plotted for
different compressive strains ¢33. The inhomogeneity increases with the deformation, which can be seen by
the minimum and maximum values of the equivalent plastic strain, starting with min/max strains of 0.08981
and 0.1447 at ¢33 = —0.05 to 0.6345 and 1.654 at &35 = —0.35. As a consequence, the orientation of the sin-
gle crystal can be considered to change locally, as it has been also observed experimentally and numerically
in Becker et al. (1991).

In order to assess the transversal anisotropy with an initially circular cross-section for the cases without
(Chang and Asaro, 1981) and with precipitates (suggested model), distances of four marked points are plot-
ted during the deformation process in Fig. 11. For the case with precipitates, the length difference between
the major and minor axis is smaller than for the case without precipitates. This indicates that the predicted
anisotropy by the suggested model is reduced in comparison to the conventional model where the precip-
itate structure is not reflected.

5.3. Back stress and non-monotonous loading

While Bauschinger effects are known to be not rather small for single phased aluminum, materials with
precipitates are known to exhibit strong Bauschinger effects (e.g., Bate et al., 1982) which are accounted for
by back stresses in the material description. In Fig. 12 strains versus stresses in tension-compression in dif-
ferent directions are illustrated, showing the differences in kinematic hardening. Up to 5% strain, the hard-
ening is not significantly affected by the precipitate rotation with relative to the lattice as shown in Fig. 4.
The strong increase in the flow stress is related to both kinematic and isotropic hardening. At larger strains
of more than 0.05 strain the differences become more significant as can be seen from the tension curves in
Fig. 13 where the strains versus total stress is shown in comparison with the back stress. Fig. 14 shows
stress—strain diagrams where the material is first deformed in x;-direction and than in the x,-direction.
While the [110] [001] [I10] orientation is hardly affected by the precipitate rotation the
[122] [210] [245] orientation shows quite considerable differences in the hardening behavior applying
the precipitate rotation or not.
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————— without precipitate-(3) direction
————— with precipitate-(3) direction
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— . —e.—..  without precipitate-(4) direction
—_—— with precipitate-(4) direction

(1)
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Fig. 11. Distance changes during deformation.
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Fig. 14. Stress—strain curves (t;;—&;; and Ta—£5) in [110] [001] [110] and [122] [210] [245] crystalline orientations with load path
change.

6. Conclusions

The effect of the thin precipitates on the anisotropy of the initial slip resistance and isotropic-kinematic
hardening has been modeled in this article and a corresponding elastic—plastic rate independent algorithmic
treatment has been derived. From the results of the numerical simulation it is found that the suggested
model represents the initial plastic anisotropy at least qualitatively well and that it has an improved repre-
sentation of various characteristic hardening behaviors in comparison with conventional hardening descrip-
tions where the precipitate structure is not reflected.
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Appendix A. Determination of the active slip systems

The Newton iteration outlined in Section 4 to determine the plastic slip is embedded into the following
iterative procedure for the determination of the active set of slip systems 4, which enforces the Kuhn-Tuck-
er type loading and unloading conditions, thus sign(t* — x*)Ay* = 0 and ®* < 0 for all « € 4. At the begin-
ning of the iteration, a first estimate 4 = A,, is assumed, thus the trial active set at time ¢, coincides with
the one at time z,,. If the results obtained by the Newton iteration contradict constraints (15); and (15),, the
Newton iteration is restarted with 4 = {«} of the maximal violated @*. Other slip systems are then added or
removed successively one after the other. Each single change of the active set is accompanied by the Newton
iteration for the incremental slip. After consistency has been restored by the Newton iteration, conditions
(15); and (15), are checked again. If some parameters Ay* in o € A violate the discrete loading condition
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Table A
Stress integration scheme

Variable input: F, F}, 7", g, X", 4,
(E) Elastic predictor:
Compute: S g gt
If "™ < 0 for all « € S then ot em il i
F;+l _ F; yn+1 =9, gaz”" — gx”’ X =X, S =S, A1 =|
and Exit
(P) Plastic predictor:
Initialize active set iteration counter i, =0 and set 4,41 = 4,
(A) determination of the active slip systems:
O dgeg = fger T 1
If (isee =2 and 4,41 # |) then set 4, = {o = arg[max ®*]€S}
OAy*=0forallaue Sand k=0
(N) Newton iteration:
ok=k+1
o Compute D for o,pe A
o If needed regularize D via (47) and (48)
° Aya"“ — Ayoc‘ +Eﬁ[D1ﬂ"]*lrﬁ"
oyl =gm 4 Z%|A~/“H , update € and H via (23)
o Compute " If [|I*"!|| = tol go to (N)
O If 3o € A4: sign(t” — x*) Ay* <0 then
drop minimal loaded system, thus,
A= {A/(o = arglmin ®*] € A)} and go to (A)
O If 3u € A: @* > 0 then
add maximal loaded system, thus,
A=1{A4 U (x=argmax ®*] € S/A4)}and go to (A)

~n+l ~trial

Variable output: F;“, e X' 8T =8, 4,

sign(t* — x*)Ay* = 0, the minimal loaded system is removed from A and the local Newton iteration is re-
started with Ay* > 0 for all o € 4.

Having obtained a converged solution of an active set with sign (t* — x*)Ay* = 0 for all « € A, condition
@* < 0 is checked by monitoring the yield criteria of non-active systems S/A4. For violations in some slip
systems, the maximal loaded system of this set-not contained in A—is added and the Newton iteration
is restarted. Otherwise, the local iteration is terminated. The whole stress integration procedure has been
schematically summarized in Table A.

Appendix B. Numerical treatment for ill-conditioned Jacobian matrixes

Under particular loading situations, some slip systems in the determined sets may be redundant and the
Jacobian matrix [D**] can be ill-conditioned or singular. Numerical treatments for such cases have been
suggested by Anand and Kothari (1996) and Miehe and Schréder (2001). Here the regularization by the
inverse based perturbation technique, proposed by Miehe and Schroder (2001), is adopted. For this,
[D*"] in (40) is factorized into a lower [L**], a upper tri-diagonal [U*], and a diagonal matrix [@*’]=
diag[d', &, ...,d" as [D*P]= [LPTPP U If |&| < & where & = ¢pyin||D|| is valid for one slip system a,
then the diagonal terms of [D*’] are modified via D™ — D**+ sign(D*) ¢ to regularize the Jacobian
matrix, where ¢, denotes a given machine dependent minimum inverse condition number and norm |||
is defined by |D|| = maxazﬂ\D“ﬁL This modified Jacobian is then used to solve (39).
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